Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/31

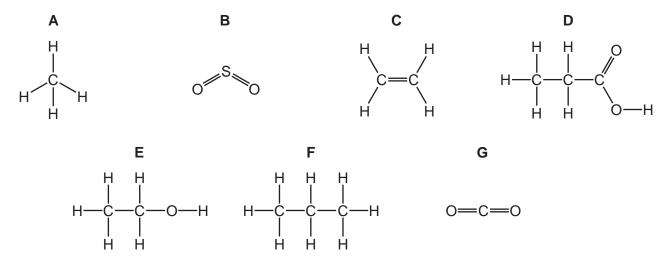
Paper 3 Theory (Core)

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.


INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 The structures of seven compounds, A, B, C, D, E, F and G, are shown.

Answer the following questions about these structures. Each structure may be used once, more than once or not at all.

(a) State which structure, A, B, C, D, E, F or G, represents:

(iii) a hydrocarbon that decolourises aqueous bromine

- (i) a compound that contributes to acid rain

 [1]

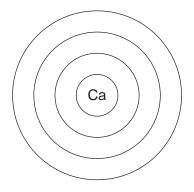
 (ii) a product of respiration

 [1]
-[1]
- (iv) a carboxylic acid[1]
- (v) a compound that is the main constituent of natural gas.

 [1]
- (b) Compound ${\bf C}$ can be produced by cracking the kerosene fraction of petroleum.
 - (i) State the meaning of the term *cracking*.
 - (ii) Complete the chemical equation for the cracking of $C_{13}H_{28}$ to form C_8H_{18} and one other hydrocarbon.

$$C_{13}H_{28} \rightarrow C_8H_{18} + \dots$$
 [1]

[Total: 8]


2 (a) The table compares the percentage by mass of the elements in the whole Earth and in the Earth's crust.

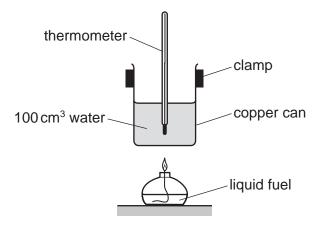
element	percentage by mass in the whole Earth	percentage by mass in the Earth's crust
aluminium	1.20	8.20
alullilliulli	1.20	0.20
calcium	1.10	3.60
iron	34.60	5.00
magnesium	12.70	2.00
oxygen	29.50	46.60
silicon	15.20	29.50
sodium	0.60	2.80
titanium	0.10	0.55
other elements		1.75
total	100.00	100.00

Answer these questions using only the information in the table.

(i)	Deduce the percentage by mass of the other elements in the whole Earth.
	[1]
(ii)	State which element is present in the whole Earth in the greatest percentage by mass.
	[1]
(iii)	Give two major differences in the composition of the whole Earth and the Earth's crust.
	1
	2
	[2]
	[-]

(b) Complete the diagram to show the electron arrangement in a calcium atom.

4


(c)	Iron	is extracted from iron ore.	
	(i)	Name an ore of iron.	
			[1]
	(ii)	Iron ore contains iron(III) oxide. Iron(III) oxide is reduced by carbon monoxide in a blast furnace.	
		Complete the chemical equation for this reaction.	
		$Fe_2O_3 + 3CO \rightarrowFe +CO_2$	[2]
(iii)	Calcium carbonate is added to the blast furnace, where it undergoes thermal decomposition Calcium oxide is formed.	n.
		State the meaning of the term thermal decomposition.	
			[2]
(iv)	Choose the correct statement about the reaction of calcium oxide in the blast furnace.	
		Tick (✓) one box.	
		It reacts with carbon monoxide to form slag.	
		It reacts with carbon to form carbon dioxide and calcium.	
		It reacts with impurities in the iron ore to form slag.	
		It catalyses the removal of oxygen from iron(III) oxide.	
			[1]
	(v)	State one advantage of recycling iron.	
			[1]
		[Total: 1	3]

3	This	question	is	about	fuels	and	energy	production.
---	------	----------	----	-------	-------	-----	--------	-------------

(a)	Name a	fuel that	is a	solid at	room	temperature.
-----	--------	-----------	------	----------	------	--------------

(b) The diagram shows the apparatus used to compare the energy released when 100 cm³ of water is heated by burning different liquid fuels, **J**, **K**, **L** and **M**.

All conditions are kept the same, apart from the type of fuel and mass of fuel burned.

The results are shown.

fuel	mass of fuel burned/g	increase in temperature/°C
J	1	5
K	2	9
L	1	6
M	3	12

Deduce which fuel.	JKI or M	releases the most	energy per gram
Deduce Willell Idel.	U. IX. L UI IVI	. 16168363 1116 111031	. Chichay bel alaili.

[1]	1]
-----	----

(c) Name the type of chemical reaction that releases heat energy.

11 I	

(d) Name the two products formed when a hydrocarbon fuel undergoes complete combustion.

an	J	21

(e) (i)	Choose from the list the radioactive isotope used as a source of energy.							
	Draw a circle	e around you	r answer.					
		²⁷ A1	²³ Na	¹⁶ O	²³⁵ U	[1]		
(ii)	State one other industrial use of radioactive isotopes.							
						[1]		
						[Total: 7]		

[2]

- 4 This question is about halogens.
 - (a) The table shows some properties of four halogens.

halogen	melting point in °C	boiling point in °C	density at room temperature and pressure in g/cm³
fluorine	-220	-188	
chlorine		-35	0.003
bromine	-7	59	3.12
iodine	114	184	4.93

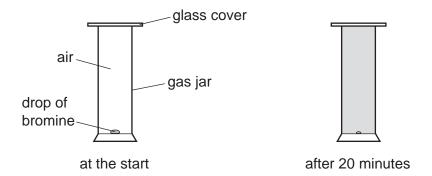
- (i) Complete the table by predicting:
 - the melting point of chlorine
 - the density of fluorine at room temperature and pressure.

(ii) Predict the physical state of fluorine at 0 °C.
Give a reason for your answer.

- **(b)** Fluorine reacts with water to produce hydrogen fluoride and oxygen.
 - (i) Complete the chemical equation for this reaction.

.....
$$F_2 + 2H_2O \rightarrowHF + O_2$$
 [2]

(ii) In this reaction both oxidation and reduction take place.


State the meaning of the term oxidation.

.....[1

(c) Bromine is a red-brown liquid.

A drop of liquid bromine is placed in a gas jar.

After 20 minutes the red-brown colour has spread throughout the gas jar.

Explain these observations using the kinetic particle model.	

[Total: 10]

This qu	estion is	about compour	nds of	nitrogen.				
(a) Fe	Fertilisers containing nitrogen are used by farmers to improve crop growth.							
Name two other elements found in most fertilisers that improve crop growth.								٦.
				and				[2]
The	e produc	ts are ammonia	, a sa	llt and a liquid t	-		pper	(II) sulfate blue.
		calcium hydroxide	$\Bigg] \rightarrow$	ammonia	+		+	
			_				1	[2]
tes	t							
obs	servation	S		•••••				[2]
(d) Ba								
								[1]
(ii)	State o	ne adverse effe	ct of	oxides of nitrog	en or	n health.		
								[1]
								[Total: 8]
	(a) Fermanda Na	(a) Fertilisers of Name two (c) Ammonium The product Complete the ammonium chloride + (c) Describe a test	(a) Fertilisers containing nitrog Name two other elements (b) Ammonium chloride, NH ₄ C. The products are ammonia Complete the word equatio ammonium chloride + calcium hydroxide (c) Describe a test for chloride test	 (a) Fertilisers containing nitrogen are Name two other elements found two other elements found two other elements found two other elements found the series of the content of the products are ammonia, a series of the products are ammonia, a series of complete the word equation for the calcium hydroxide the calcium hydroxide the calcium hydroxide of the calcium	Name two other elements found in most fertilise	 (a) Fertilisers containing nitrogen are used by farmers to Name two other elements found in most fertilisers the summer of the service of oxides of nitrogen or the service of oxides of n	 (a) Fertilisers containing nitrogen are used by farmers to improve crop grown Name two other elements found in most fertilisers that improve crop grown and	 (a) Fertilisers containing nitrogen are used by farmers to improve crop growth. Name two other elements found in most fertilisers that improve crop growth. and

6	This	question	is	about	acids,	bases	and	salts.
---	------	----------	----	-------	--------	-------	-----	--------

(a)	Describe the reaction of excess hydrochloric acid with zinc and with zinc oxide. Give the names
	of the products and any observations.

reaction	\ \\/ith	7100
I c aciloi	ו איונוו	

•	products
	and
•	observations
rea	ction with zinc oxide
•	products
	and
•	observations

(b) (i) Small pieces of zinc react with excess hydrochloric acid of different concentrations. The time taken for each reaction to finish is recorded.

The concentrations of each acid are:

- 0.5 mol/dm³
- 1.0 mol/dm³
- 2.0 mol/dm³.

All other conditions stay the same.

Complete the table by writing the concentrations in the first column.

concentration of acid in mol/dm ³	time taken for reaction to finish/s
	40
	20
	80

© UCLES 2022 0620/31/O/N/22

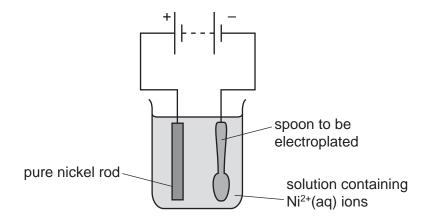
[4]

	(ii)	Describe the eff lower temperatu		ime taken for	the reaction to	finish when i	t is carried out at a
		All other condition	ons stay the	same.			
							[1]
(c)	Acid	ds react with alka	alis.				
	Cho	pose the pH value	e which is al	kaline.			
	Dra	w a circle around	d your answe	er.			
		рН	11	pH 5	рН 7	pH 12	[1]
(d)		te the colour cha llkali.	nge when ex	cess hydroch	loric acid is add	ded to a solution	on of methyl orange
	fron	n			to		[2]
(e)	Soi	ls where crops a	re grown car	n become acid	lic after fertilise	ers have been	spread on the soil.
	(i)	Explain why cor	ntrolling soil	acidity is impo	ortant.		
							[1]
	(ii)	Name a compo	und used to	control soil ac	idity.		
							[1]
(f)		scribe how to prolium sulfate.	epare pure	dry crystals o	of sodium sulfa	ate from an a	queous solution of
							[2]
							[Total: 13]

7 (a) The structure of lactic acid is shown.

(i)	On the structure,	draw a circle arc	und the alcohol fur	nctional group.	[1]
(ii)	Deduce the form atoms.	ula of lactic acid	to show the numb	per of carbon, hydrogen a	nd oxygen
					[1]
(b) Eth	nanol is an alcohol.				
(i)	Complete the ser	ntence about etha	anol using a word f	rom the list.	
	ethane	ethene	methane	poly(ethene)	
	Ethanol is manufa	actured by ferme	ntation or from		[1]
(ii)	State two condition	ons needed for fe	ermentation.		
	1				
	2				
					[2]
(iii)	Ethanol is used in	n drinks and as a	fuel.		
	State one other t	use of ethanol.			
					[1]
(iv)	Name one physic or impure.	cal property that	can be used to det	ermine if a sample of etha	nol is pure
					[1]
(c) Eth	nanol and methano	I are in the same	homologous serie	S.	
Ex	plain the meaning of	of the term homo	logous series.		
					[2]

[Total: 9]


[2]

8	This	question	is	about	metals.
---	------	----------	----	-------	---------

(a)	Nickel is a transition element. Sodium is an element in Group I of the Periodic Table.
	Nickel has a higher melting and boiling point than sodium.

Give two other ways in which the physical properties of nickel differ from the physic	al properties
of sodium.	
1	

(b) A steel spoon can be electroplated with nickel. The apparatus is shown.

(i) Choose a word from the list which describes the nickel rod.

Draw a circle around your answer.

	anion	anode	cathode	cation	electrolyte	[1]
(ii)	Describe the ol	oservations n	nade during this	s electroplatir	ng at the:	
	pure nickel rod					
	spoon					
/:::\	Ctoto ana rocc	on for alcotro	nlating on ahia	a t		[2]
(iii)	State one reas	on for electro	ppiating an obje	ect.		

(c)	Dec	luce the numb	ber of electrons and n	eutrons in one atom o	of the isotope of nickel showr	۱.
				⁶² ₂₈ Ni		
	num	nber of electro	ons			
	num	nber of neutro	ons			
						[2]
(d)	A co	ompound of n	ickel has the formula	NiC ₄ O ₄ .		
	Con	nplete the tab	ole to calculate the rela	ative molecular mass	of NiC ₄ O ₄ .	
		atom	number of atoms	relative atomic mass		
		nickel	1	59	1 × 59 = 59	
		carbon		12		
		oxygen		16		
(e)	The	table shows	the rates of reaction of		ar mass =	[2]
			metal	rate of reaction		
			magnesium	fast		
			nickel	slow		
			sodium	very fast		
			tin	very slow		
	Put	the least read	als in order of their reactive metal first.	activity.		
	iea	st reactive -			most reactive	1
						[2]

0620/31/O/N/22

[Total: 12]

© UCLES 2022

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=	_ 0	שַׁ שַּ)	Φ	nc C	~	_	on C	3		ton +	4	Φ	e –	.0	_	uo .			
	=	r I	helium 4	7	Z	7 Je	7	⋖	arg 4(3		kryp 8	2	×	xen 13	8	2	rad			
	₹			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium	116	_	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Fl	flerovium
	≡			5	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	18	11	thallium 204			
										30	Zu	zinc 65	48	В	cadmium 112	80	Hg	mercury 201	112	S	copernicium
										59	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium
Group										28	Ë	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Group										27	ဝိ	cobalt 59	45	Rh	rhodium 103	11	'n	iridium 192	109	¥	meitnerium -
		- ⊐	hydrogen 1							26	Ь	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
				J						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium
					ГО	ss				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium -
				ğ	ator	relat				22	i=	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	፟ጟ	rutherfordium -
							J			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=	•		4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_	•		3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	Ē.	francium -

Lu Lu	lutetium 175	103	ت	lawrendum -
70 Yb	ytterbium 173	102	8	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium –
₆₈ Г	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
66 Dy	dysprosium 163	86	ర	californium -
es Tb	terbium 159	26	Ř	berkelium
Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pn	plutonium
e1 Pm	promethium	93	ď	neptunium -
°° PN	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	H	thorium 232
57 La	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).